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NOMENCLATURE
a, radius of the tube cross-section ;
Ao, mean radius of the tube cross-section ;
a,b,c,, coefficients appearing in the solution and listed
in the Appendix;
g, acceleration due to gravity;
k, thermal diffusivity of the fluid;
o8
Nu, Nusselt number, — (v/k)a— ;
M |1
P.p, dimensional and non-dimensional pressures,
respectively ;
Pr, Prandtl number, v/k;
Ra, Rayleigh number, tgfal/vk :
Re, Reynolds number, ,/ayv;
s, slowly varying function of the axial
coordinate ;
s, ds/dx:
s, d?s/dx?;
T, dimensional temperature ;
T, specified wall temperature;
Tos temperature at the cross-section containing the
origin ;
(R,¢,X), dimensional and non-dimensional cylindrical
(r, ¢, x), polar coordinates ;
(U, V, W), velocity components in the directions (R, ¢, X )
(u, v, w), and (r, ¢, x), respectively.

Greek symbols

B, coefficient of cubical expansion of the fluid ;

& a small parameter signifying the slow variation
of the tube cross-section, ¢ « 1;

", r/s;

0, non-dimensional temperature ;

v, coefficient of kinematic viscosity of the fluid ;

T, modified stream function;

0, density of the fluid;

1, constant temperature gradient at which the

tube wall is maintained ;
stream constant at the tube wall.

1. INTRODUCTION

IN viEw of the fact that the secondary motion arising due to
buoyancy forces in the flow field of a viscous fluid significantly
increases the rate of heat transfer with increasing axial
distance, the natural convective effects have been extensively
analysed in recent years [1-9]. However, most of the work
deals with experimental models while the theoretical models
are limited in scope due to the complicated equations of
motion and energy. Though closed form solutions have been
presented in the case of a straight circular tube [7-9], the
axial dependence of the flow variables has been neglected.
The aim of the present paper is to obtain analytical ex-

pressions for the free convective flow and temperature
distributions as a next approximation over the forced con-
vection solution, in ducts of non-uniform cross-section which
are encountered in heat exchangers and in biological systems.

2. FORMULATION OF THE PROBLEM

We consider the fully developed laminar steady motion of a
viscous incompressible fluid in a horizontal tube of radius a
with non-uniform cross-section, the walls of which are heated
uniformly so that a constant temperature gradient 1 is
maintained along the axial direction. Cylindrical polar
coordinates (R, ¢, X) are used with ¢ measured anticlockwise
from the upward vertical and X along the axis of the tube ; the
corresponding velocities are (U, V, W). We neglect the density
variations insofar as they give rise to a gravitational force and
neglect the temperature dependence of the coefficient of
kinematic viscosity v and the thermometric conductivity k of
the fluid. These assumptions are well justified since the wall
temperature increases slowly with distance along the tube
axis. In view of the smaller velocities and comparatively larger
temperature differences involved we can also neglect the
dissipation terms in the energy equation.

The non-uniformity of the tube cross-section is introduced
based on the long wavelength approximation. This is
achieved by representing the radius of the tube (R = a)as a

slowly varying function of the axial coordinate
a = ays(eX/ag) (2.1)

where a, is the mean radius of the tube, ¢ is a small parameter
(¢ «< 1) signifying the small variation.

The basic equations are rendered dimensionless using the
following scheme:

r = R/ay,,
x = gX/ay,

(,0,w) = (@)} (U, V, W),
p = ag/p¥3) P,

T, = T = (ragv/k)6

22)

where T, the specified wall temperature is given by
T, =T, + tX.
Thus the governing equations are
O(ru dv O(rw
o B o)
or ¢ ox
ou v du v? u dp
Yoo o £
or or

+ew—
rop r max

+ ‘[Vzu LA 5 —] — (Ra/ReX)Bcosd  (2.5)
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v v v w v 1 dp
o rae v Vex  rag
+i[v2u Pyl fa—}L(Ra/Rez)esmqs 2.6)
Re 2 r 2
ui—f+-§ %Hw%;f: —%J*R%VZW @7
and
0 v o8 o 1 1
u5;+; ajd;«kw(aa—;;;)—-ﬁlzevzﬂ 2.8)
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LA NN B i
ot ror rt ot ox?

3. SOLUTIONS

We shall take the solution of equations (2.4)-(2.8) to
consist of two parts, one due to the variation of the tube cross-
section and the other due to buoyancy effect. Accordingly a
suitable perturbation scheme for the solution would be

Y(r, ¢, x) = Yy + (eY,o + RaYyy)

+ (Y30 + eRaY; + R2Y35) + ... (3.0)

where Y, takes the variables u, v, w, p and 8. Substitution of
equation (3.1} into equations {2.4)~(2.8) and separating the
coefficients of equal powers of the parameters yield a number
of equations. These equations can be grouped again into three
parts namely (i) those that govern the momentum and heat
transfer in tubes of varying cross-section, (ii) those that yield
the free convection flow and (iii) those that give the in-
teraction of the two factors,

With such separating effects we notice that the equations
and solutions for (i} is same as that obtained by Manton [10],
while the corresponding temperature distribution is given by

Re
oo = T(l -3 - 1%,

8,0 = (ReS/T25) (n® — 84° + 18¢* — 1612 + 5),
6 2n
(1 - 7™ Prb (32)
— 1yt -t
2n [( Fret J}

0,0 =Re* = {X
R 3
F Z 1)n+lcn(1 _— '72")
=1

n=1

where n = r/s and for convenience the constants a,, b, and ¢,
are recorded in the Appendix. In case (ii) the equations of
motion and energy and their solutions will be the same as that
obtained by Morton [7] except for fractional multiplicative
changes arising due to the definitions of the Rayleigh number
which differ by a multiplication factor of 4.

Thus case (iii) gives an improved extension to the analyses
of Manton [10] and Morton [7]. The evaluation of these
equations provides the results of the more important contri-
bution due to the combined effect of the non-uniformity of the
tube cross-section and the presence of a body force. The
governing equations in this case are

d dvy,  B(rwy,
5}:("“21)"‘345— 3 =0, (3.3)
é b7 a
o gu+ u,, gxo+“00 ;‘11
_ _0py 1 2 Uy 2 vy
ST w YRV T TR G
1
R—eio 10 €08 ¢, (3.4)
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ow ow aow, é
“10‘%4'“116—’,“)"'“21—632‘*5;(“/00"’11)
8
=Py vy, (36)
ax
26 o8 88y a6,
“10—6:_1‘4'“11 610"‘“21 ar + Woo—7— x
fil:] 1 L
+ w“% - F;WU - PrRevzg21

To solve these equations we introduce the modified stream
function 7 using equation (3.3) as follows:

1 on orn
=~ — and F,=-—
Uy % Fay P)
where
Re 4 4 2 H
Vi =1y, -{-14‘4 ss'pt(n® — 159* + 35y = 25)sin¢g  (3.8)
and the corresponding boundary conditions are
1 én -0
rog
é R = 39
i —e~ss’ sin ¢ on r=slx) 39
or 360
0 =0,0,,=0

and (1/r) (On/d¢), (On/dr), w,, and @,, are finite on r = 0.
Substituting equations (3.8) into equations (3.4)-(3.7) and
using equations (3.9), we get the solution as

Res?s'sin¢
207360
+459378n® — 34.3746n° — 74.999Tn* — 5.7474n*
+ 543015] + s[8.8336n"" — 128.36961° + 463024y
— 70.704n° + 54378y — 399.8424] + 288(1 — n%)},
wy, = c08 2¢{s*s'n{0.00451° — 0.03241* + 0.078347
— 0.0504) + Res'n(5.3333n* — 15.9999,% + 10.6666)
+ Re*s'[0.2857913 — 0.70057'* + 36.00254°
— 85.005617 + 99.33961° — 49,0037 — 0.9187]
+ Re?ss'n[s(0.00014° + 0.00061* — 0.00029*
+0.0001) — (0.00087* — 0.00197% + 0.0011)]},
8,; = 1 cos ¢{Pr Re3s°s'[0.0001n** — 0.00014*2
+0.0014° — 0.0017° + 0.0027° — 0.002*
+ 0.00017% — 0.001] — Pr Re?s%5'(0.00017°
— 0.00029* + 0.0004%° — 0.0002) + Re*s'(0.0137n*
~ 0.00427°% + 037" — 1.06261° + 2.18077°
— 2.70857* + 1.2185%% + 0.0624) + Res?s'(0.0001n°
— 0.00077° + 0.0037* — 0.0025)

+ terms of order 10~ 7 and less},

n{s*[0.7074n'* + 14.175¢'°
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Fic. 1. The non-dimensional radial and tangential velocity components taken up to second order
approximation in planes normal to the pipe axis. The radial component u is taken vertically through the pipe
axis. The transverse component v is a horizontal profile through the axis.
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F1G. 2. The non-dimensional axial velocity component and temperature distribution for two different
geometries,
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F1G. 3. The stream lines corresponding up to the second order approximation for flow in planes normal to the
pipe axis.

the dimensionless heat flux at the wall is given by

Pr d6
Nu= —— —

3.10
s d’7 n=1 ( )

and the pressure distribution up to the first order of approxi-
mation is given by
dx  Re j A 11y

= — — — 4 —¢Re? =
16{0 4s+ sRe \ +180 e

* dx st
- 2 Py - 2
eL(Ss S)s‘+ss3[2+"]

@29 - 129° +29q)x.rsdx}.

0

788 Re

4, DISCUSSION

To understand the combined effect of the non-uniformity
of the tube cross-section and the secondary convection we
have considered flow in tapered tubesic. (i) s{(x}) = 1 — exand
flow in constricted tubes i.e. (i) s(x) = 1 + &sin 2nx and (iii)
s{x) = 1 — gexp (—x?/2). Numerical computations are
carried out and the results are depicted graphically.

The radial and transverse components of the flows at each

cross-section are in the negative direction and only near the
wall these become positive. This feature corresponds to the
trapping of the fluid observed by Manton [12]. Due to the
presence of free convection, however small, there is a signi-
ficant heating of the fluid only near the wall. This, in turn,
enhances the secondary motion resulting in the increase of the
velocity near the wall. This phenomenon is gradually at-
tenuated by sufficiently strong convective force. Figure |
shows that the radial and transverse velocity profiles are
similar to that of Morton [7] and hence the magnitude
variations can be attributed mainly to the tube geometry.

Figure 2 depicts the axial velocity component and the
temperature profiles. The temperature field’s dependence on
the tube geometry is insignificant as it changes in magnitude
only with respect to the free convective force. Whereas, the
magnitude of the axial velocity shows a marked dependence
both on the tube geometry and on the convection parameter.
Figure 3 depicts the deviation of the stream function from that
of a rigid tube [7].

Figure 4 shows the variation of the Nusselt number with
respect to the tube geometry and for different Rayleigh
numbers. The heat flux at the wall prominently fluctuates
from its mean. But the amplitude of oscillation decreases as
Ra increases and it almost coincides with its mean for
sufficiently large Ra. This is to be expected as, in the fully
developed region, the secondary flow gradually increases.
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FiG. 4. The Nusselt number as a function of the axial coordinate x.
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This minimizes the temperature fluctuations in the flow field
by convection. Hence after sufficiently long time, with strong
convection, the heat flux becomes steady irrespective of the
tube geometry, whereas in the analysis of Chow and Soda
[11] it remains oscillatory throughout but the inherent
restriction on the value of the Reynolds number in this
analysis prevents us from making any further quantitative
comparison with their analysis.

Itisinteresting to note that the pressure distribution is non-
uniform along the axial direction as emphasised by Casal and
Gill [9] and also that the flow and temperature fields’
dependence upon the axial distance cannot be neglected.
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APPENDIX

The coefficients appearing in the solutions of the governing
equations are

1 /19
a, = ﬁ5<——Pl + 13Q1> by = —(L.75P, — Q))

24
1 /11
o = %61», v 29Q,> by = 1375P, — 70,
a3=i<3pl +Q1> b, = —(35.5P, + 16Q,)
24\9
a, = %(Pl + 30} b, = 34.5P, + 10Q,
1 8
5 =%<p, +§Q,> b = —(1075P, — 50,)

1 /1 1
a6=1800<§P1+Q1> bb=_<§P1+Q1)
where
P, =16(s'/s)* and Q, = 1.25P, — 4(s"/s)

¢, =20, =55 —ss", ¢, = 7.25s'2 — 1.75s5".



