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NOMENCLATURE 

radius of the tube cross-section ; 
mean radius of the tube cross-section ; 
coefficients appearing in the solution and listed 
in the Appendix ; 
acceleration due to gravity ; 
thermal diffusivity of the fluid ; 

Nusselt number, - (v/k)E 
ii? *=,; 

dimensional and non-dimensional pressures, 
respectively ; 
Prandtl number, v/k ; 
Rayleigh number, rg&$vk : 
Reynolds number, Il/Ja,v; 
slowly varying function of the axial 
coordinate; 
dsldx ; 
d=sldX= ; 
dimensional temperature ; 
specified wall temperature ; 
temperature at the cross-section containing the 
origin ; 
dimensional and non-dimensional cylindrical 
polar coordinates; 
velocity components in the directions (R, 4, X) 
and (r, 4, x), respectively. 

Greek symbols 
B> coefficient of cubical expansion of the fluid ; 
8, a small parameter signifying the slow variation 

of the tube cross-section, c << 1; 
q. r/‘s ; 
0, non-dimensional temperature; 
v, coefficient of kinematic viscosity of the fluid ; 
n, modified stream function ; 
I’* density of the fluid; 
r, constant temperature gradient at which the 

tube wall is maintained; 
(// 0, stream constant at the tube wall. 

1. INTRODUCTION 

IN VIEW of the fact that the secondary motion arising due to 
buoyancy forces in the flow field of a viscous fluid significantly 
increases the rate of heat transfer with increasing axial 
distance, the natural convective effects have been extensively 
analysed in recent years [l-9]. However, most of the work 
deals with experimental models while the theoretical models 
are limited in scope due to the complicated equations of 
motion and energy. Though closed form solutions have been 
presented in the case of a straight circular tube [7-93, the 
axial dependence of the flow variables has been neglected. 
The aim of the present paper is to obtain analytical ex- 

pressions for the free convective flow and temperature 
distributions as a next approximation over the forced con- 
vection solution, in ducts of non-uniform cross-section which 
are encountered in heat exchangers and in biological systems. 

2. FORMULATION OF THE PROBLEM 

We consider the fully developed laminar steady motion of a 
viscous incompressible fluid in a horizontal tube of radius a 
with non-uniform cross-section, the walls of which are heated 
uniformly so that a constant temperature gradient T is 
maintained along the axial direction. Cylindrical polar 
coordinates (R, 4, X) are used with 4 measured anticlockwise 
from the upward vertical and X along the axis of the tube; the 
corresponding velocities are (U, V, W). We neglect the density 
variations insofar as they give rise to a gravitational force and 
neglect the temperature dependence of the coefficient of 
kinematic viscosity v and the thermometric conductivity k of 
the fluid. These assumptions are well justified since the wall 
temperature increases slowly with distance along the tube 
axis. In view of the smaller velocities and comparatively larger 
temperature differences involved we can also neglect the 
dissipation terms in the energy equation. 

The non-uniformity of the tube cross-section is introduced 
based on the long wavelength approximation. This is 
achieved by representing the radius of the tube (R = u) 3s a 
slowly varying function of the axial coordinate 

a = a,s(&X/a,) (2.1) 

where a, is the mean radius of the tube, E is a small parameter 
(s << 1) signifying the small variation. 

The basic equations are rendered dimensionless using the 
following scheme : 

r = R/a,, 

I = exia,, 

(c t‘, w) = (GN,) (U, v, W), 

P = WP!m. 

(2.2) 

T, - T = (m,vlk)B 

where T, the specified wall temperature is given by 

T, = TO + TX. (2.3) 

Thus the governing equations are 

d(ru) do d(rw) 
y+qfdx=O (2.4) 0r 

u_++---_++--_-- au r du 2 au sp 

ar r &#J r 8.x ?r 

+ t V2u - ; - 2 ‘y 
r2 &#J 

- (Ra/Re’)t?cosqS (2.5) 
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au v au uv au 1 aP u-+- -+-+w-= -- - 
ar r a4 P ax r ad, 

and 

where 

--:+L * 
rz a+ 1 +(Ra/Re2)@sintj 

aw u a~ aw ap 1 
uYg+-- -+ewdx= ----+-VW 

r &#J ax Re 

v4E+!~+Lz-+E2~. 
r2 ap 

3. SOLUTIONS 

(2.6) 

P-7) 

(2.8) 

We shall take the solution of equations (2.4)-12.8) to 
consist of two parts, one due to thevariation of the tube cross- 
section and the other due to buoyancy effect. Accordingly a 
suitable perturbation scheme for the solution would be 

Y(r, d, x) = Y,, + (.sYlo + RaY,,) 

+ (&‘Yzo + &Ray,, + Ra*Y,,) + . . . (3.1) 

where Y,,. takes the variables u, v, w, p and 8. Substitution of 
equation (3.1) into equations (2.4)-(2.8) and separating the 
coefficients of equal powers of the parameters yield a number 
ofequations. These equations can be grouped again into three 
parts namely (i) those that govern the momentum and heat 
transfer in tubes of varying cross-section, (ii) those that yield 
the free convection flow and (iii) those that give the in- 
teraction of the two factors. 

With such separating effects we notice that the equations 
and solutions for(i) is same as that obtained by Manton [lo], 
while the corresponding temperature distribution is given by 

6,, = (Re2s’/72s)(qs - 8$ + 18$ - 16~~ + S), 

ahI ~IOVll au, 1 

40 dr+ ~ + woo- 
r ax 

1 ah 1 =__- 
r a4 

+ Y& 
[ 
V%, _$i+Z% 

r2 a# 1 + &8tosin8, (3.5) 

a+, aho 
hoar + u117 + u21 

aWoo 3 
7 + ~6%“““) 

= - -&- + Rev2w,,, (3.6) 

ah, at+,, a~,, aq, 
“a ar -+u,,--++u,,-++w,,--- 

ar ar ax 

aeoo 1 1 
+w,*---w,, = 

ax Pr 
-V%,, 
Pr Re 

To solve these equations we introduce the modified stream 
function tr using equation (3.3) as follows : 

1 an an 
u2, =- - 

r a4 
and _V,,=-- 

dr 

where 

y2, = uzt +$ss’g4(n6 - i5q4 + 35~’ - 25)sin 4 (3.8) 

and the corresponding boundary conditions are 

1 an --=o 
r 84 I 

dn Re 
---sss’sin~$ 

on r = s(x) (3.9) 

dr 360 

w2, =O,B,, =o 

and (l/r) (an/@), (an/&), wz, and &t are finite on r = 0. 
Substituting equations (3.8) into equations (3.4)-(3.7) and 
using equations (3.9), we get the solution as 

+ $ i (-lr+‘c,(l - n2”) 
“-1 

where 9 = r/s and for convenience the constants an, b, and c, 
are recorded in the Appendix. In case (ii) the equations of 
motion and energy and their solutions will be the same as that 
obtained by Morton [7] except for fractional multiplicative 
changes arising due to the definitions of the Rayleigh number 
which differ by a multiplication factor of 4. 

Thus case (iii) gives an improved extension to the analyses 
of Manton [lo] and Morton [7]. The evaluation of these 
equations provides the results of the more important contri- 
bution due to the combined effect of the non-uniformity of the 
tube cross-section and the presence of a body force. The 
governing equations in this case are 

(3.4) 

+ 45.9318$ - 34.3746~~ - 74.9997~~ - 5.7474~~ 

+ 54.30151 + s[8.8336$’ - 128.3696~~ + 46.3024~’ 

- 70.704q5 + 543.787’ - 399.8424-j + 288(1 - u”)}, 

wzl = cos 2#{~2s’~(0.~5~6 - 0.0324~~ + 0.0783~’ 

- 0.0504) + Res’q(5.3333tf’ - 15.QQQQ~2 + 10.6666) 

+ Re2s’[0.2857qt3 - 0.7005$’ + 36.0025~Q 

- 850056tj’ + 99.3396~’ - 49.003$ - 0.91871 

+ Rez~s’~[s(0.~l~6 + 0.0006~4 - 0.0002~2 

+ 0.0001) - (0.~8~4 - 0.0019$ + O.~ll)]}, 

ozI = n cos (p{Pr Re3s6s’[0.0001~‘4 - 0.0001~‘2 

+ 0.001~‘0 - 0.001?)* + O.O02r/6 - 0.002n4 

+ 0.0001~* - O.OOl] - Pr Re2s2s’(0.0001~6 

- 0.0002~4 + 0.~~2 - 0.0002) + Re2s’(0.0137$4 

- 0.tX342q’2 + 0.3n” - 1.0626~* + 2.1807@ 

- 2.7085~~ + 1.2185n’ f 0.0624) + Res2s’(0.0001~* 

- 0.0007~6 + 0.003~4 - 0.0025) 

+ terms of order lo-’ and less), 
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FIG. 1. The non-dimensional radial and tangential velocity components taken up to second order 
approximation in planes normal to the pipe axis. The radial component u is taken vertically through the pipe 

axis. The transverse component o is a horizontal profile through the axis. 
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FIG. 2. The bob-dimensional axial veiocity component and tem~rat~e dist~bution for two different 
geometries. 
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FIG. 3. The stream lines corresponding up to the second order approximation foe flow in planes normal to the 
pipe axis. 

the dimensionless heat Aux at the wall is given by 

and the pressure ~s~~tion up to the first order of approxi- 
mation is given by 

4. DISCUSSION 

Figure 2 depicts the axial velocity component and the 
temperature profiles. The temperature field’s dependence on 
the tube geometry is insi~ificant as it changes in magnitude 
only with respect to the free convective force. Whereas, the 
magnitude of the axial velocity shows a marked dependence 
both on the tube geometry and on the convection parameter. 
Figure 3 depicts the deviation of the stream function from that 
of a rigid tube [7]. 

To understand the combined effect of the non-uniformity 
of the tube cross-section and the secondary convection we 

Figure 4 shows the variation of the Nusselt number with 

haveconsider~~ow in tapered tubes i.e. (if s(x) = 1 - ax and 
respect to the tube geometry and for different Rayleigh 

flow in constricted tubes i.e. (ii) s(x) = 1 f E sin 2ax and (iii) 
numbers. The heat flux at the wall pro~ently fiuctuates 

s(x) = 1 - E exp (-x2/2). Numerical computations are 
from its mean. But the amplitude of oscillation decreases as 
Ra increases and it almost coincides with its mean for 

carried out and the results are depicted graphically. 
The radial and transverse components of the flows at each 

sufficiently large Ra. This is to be expected as, in the fully 
developed region, the secondary flow gradually increases. 

cross-section are in the negative direction and only near the 
wail these become positive. This feature corresponds to the 
trapping of the fluid observed by Manton [12]. Due to the 
presence of free convection, however small, there is a signi- 
ficant heating of the fluid only near the wall. This, in turn, 
enhances the secondary motion resulting in the increase of the 
velocity near the wail. This phenomenon is gradually at- 
tenuated by sufficiently strong convective force. Figure 1 
shows that the radial and transverse velocity profiles are 
similar to that of Morton [7] and hence the magnitude 
variations can be attributed mainly to the tube geometry. 
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FIG. 4. The Nusselt number as a function of the axial coordinate x. 
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This minimizes the temperature fluctuations in the flow field 
by convection. Hence after sufficiently long time, with strong 
convection, the heat flux becomes steady irrespective of the 
tube geometry, whereas in the analysis of Chow and Soda 
[ll] it remains oscillatory throughout but the inherent 
restriction on the value of the Reynolds number in this 
analysis prevents us from making any further quantitative 
comparison with their analysis. 

It is interesting to note that the pressure distribution is non- 
uniform along the axial direction as emphasised by Casal and 
Gill [9] and also that the flow and temperature fields’ 
dependence upon the axial distance cannot be neglected. 
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APPENDIX 

The coefficients appearing in the solutions of the governing 
equations are 

a, = & 
( 

sP1 + 13Q, 
1 

6, = -(1.75P, - Q,) 

1 11 
02=jjjj 

( 
3P, +29~, 

j 
b, = 13.75P, - 7Q, 

a,=$[iP, +Q,) b, = -(35.5P, + 16Q,) 

a,=k(Pt +JQ,) b, = 34.5P, + lOQ, 

as =fk, +:e,) b, = -(10.75P, - 5Qr) 

%=$&P,+Q,) b=--(iP,+Q,! 

where 

P, = 16(s’/s)* and Q, = 1.25P, - 4(s”/s) 

c, = 2c, = 5s” - ss”, c2 = 7.25~‘~ - 1.75~~“. 


